A direct derivation of the exact Fisher information matrix of Gaussian vector state space models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Derivation of the Exact Fisher Information Matrix for Bivariate Bessel Distribution of Type I

This paper deals with a direct derivation of Fisher’s information matrix for bivariate Bessel distribution of type I. Some tools for the numerical computation and some tabulations of the Fisher’s information matrix are provided.

متن کامل

Fisher Information in Gaussian Graphical Models

This note summarizes various derivations, formulas and computational algorithms relevant to the Fisher information matrix of Gaussian graphical models with respect to either an exponential parameterization (related to the information form) or the corresponding moment parameterization. 1 Gauss-Markov Models The probability density of a Gaussian random vector x ∈ R may be expressed in information...

متن کامل

A Class of Non-Gaussian State Space Models with Exact Likelihood Inference

The likelihood function of a general non-linear, non-Gaussian state space model is a highdimensional integral with no closed-form solution. In this paper, I show how to calculate the likelihood function exactly for a large class of non-Gaussian state space models that includes stochastic intensity, stochastic volatility, and stochastic duration models among others. The state variables in this c...

متن کامل

APPENDIX: A Class of Non-Gaussian State Space Models with Exact Likelihood Inference

This appendix contains definitions of the distributions used throughout the paper, derivations of the full conditional distributions, and other details not included in the paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2000

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(99)00177-9